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The information exchange dynamics between different spatial scales of a turbulent
field is experimentally investigated, with particular reference to the energy cascade
process. This is done by use of the collective light scattering (CLS) diagnostic, a
new optical setting tuned for the observation of atomic number density fluctuations
at macroscopic scales. A two-channel scattering device is described that provides
simultaneously the fluctuations at two different spatial scales. The turbulent system is
an axisymmetric air jet. With this system, time correlations between signal amplitudes
for two different scales show a characteristic time width. This time does not depend on
the observed scales: it is close to the turbulence production time. Nevertheless, signal
amplitude autocorrelation shows a shorter characteristic time. The autocorrelation
time scaling law behaves almost like the eddy turnover time from Kolmogorov theory.

1. Introduction
1.1. Collective light scattering: a lengthscale-sensitive flow diagnostic

An accepted concept of the Richardson phenomenological turbulence approach is that
large vortices drive smaller ones (see e.g. Frisch 1995). More specifically, Kolmogorov
considered vortex amplitudes for a given scale as the space Fourier transform of the
velocity field at the corresponding wavelength. He predicted a universal behaviour
of these amplitudes as a function of the scale in the so-called ‘inertial range’. In this
scale range, energy is said to be transferred from large to small wavelengths. It is then
natural to investigate with experiments whether and how this energy motion can be
characterized.

Up to now, spatial spectrum observations have relied mostly on temporal sequences
from point diagnostics such as hot wires. This provides time–frequency spectra, but
these have been converted into wavevector spectra on the assumption of a large mean
flow velocity whereby a wavevector is associated with a Doppler frequency. This is
not satisfactory however, since not only is the large mean flow velocity assumption
not always accurate, but also a conversion from one-dimensional frequency space
is unable to recover the three-dimensional k-space. Moreover it is not clear how an
energy transfer between different spatial scales can be embedded into information
from a single point. Multiwire systems have been developed by J.-P. Bonnet, from
which different wavevector components can be obtained. However these are intrusive
devices, and appropriate wavevector resolution requires a large number of wires and
a large amount of data.

There exists however a particular non-intrusive diagnostic that provides, as a single
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time sequence, an accurate space Fourier transform at a given wavevector k. It is
collective light scattering (CLS), a device that is sensitive to the macroscopic space
modulation of the refraction index. In homogeneous gas turbulence, the optical index
is locally proportional to the gas number density and the CLS signal provides an
instant number-density-space Fourier transform.

The gas number density k-spectrum in simple turbulent flows has been observed
(Stern & Grésillon 1983) to be very close to the expected Kolmogorov behaviour, i.e.
with the one-dimensional inertial-range-scale exponent. Thus although CLS provides
the number density turbulent field instead of the velocity field, its signal behaves
according to the expected turbulence universality.

1.2. Turbulence dynamics investigations

Nonlinear fluid dynamics is frequently investigated in Fourier space (Orszag 1977).
In such a space, the nonlinearities are seen as coupling between Fourier modes of
different wavevectors. If one intends to experimentally observe these couplings, it is
more accurate to use several simultaneous CLS diagnostics, each of them being tuned
to a different k-vector and used as a marker of the dynamics of this scale (see Grésillon
& Mohamed-Benkadda 1998). Three different CLS channels were selected such that
their scattering wavevectors satisfy k1 + k2 = k3. These signals were simultaneously
recorded, and the bispectrum was calculated as the mean value of their product
(the third-order statistical moment). For the simple cases of single mode instability,
a significant coupling was found, but for cases of fully developed turbulence, the
bispectrum values were only marginally significant.

Simple second-order linear statistics between two CLS signals is inappropriate for
detecting a nonlinear coupling: since the characteristic signal frequency depends on
the spatial scale as k · v̄o (a product of the wavevector times the flow velocity) the
characteristic frequencies of two different scales are different and the signal correlation
averages to zero. To avoid this frequency mismatch effect, one may either correlate
the amplitude of the complex Fourier transforms (instead of correlating a single
component, real or imaginary) at two different scales, or use a nonlinear comparison,
such as the ‘mutual information’, between two signal components. The former method
will be reported in this paper. The latter is based on the signal entropy method.

This was performed on two CLS signals (Grésillon, Cabrit & Iwana 1993). Using
‘mutual information’, the real parts of the CLS signal at different scales were found
to be significantly dependent, over large time delays. A weak time asymmetry of the
mutual information was observed between signal at different scales. But the statistical
significance and the scattering lengthscale exploration were limited by data acquisition
and optical setup performance.

1.3. Extended lengthscale relation study

The aim of this work is to extend these previous studies to experimentally establish
the relation between the signal at different scales and try to understand the nature of
this relation. As explained above, the phase and modulus analysis of the scattering
complex signal is more relevant than a real and imaginary parts analysis since the
scale information is mostly included in CLS signal modulus, while the signal phase
essentially contains, through the Doppler effect, velocity information that is not
specific to the observed scale.

In this paper, both mutual information and cross-correlation between collective
scattering signals obtained from a purpose-built optical diagnostic device at two
different scales will be investigated, especially the cross-correlation, which is easier
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Figure 1. Light scattering by a molecular gas. An incident electric field E i(ki, ωi) from a laser lights
the gas flow (number density: n(r, t)). A detector (direction r′, scattering angle θ) collects the electric
field E s(kius, ωi) scattered from the incident beam by gas molecules. The scattering wavevector is
defined as the difference between scattered and incident wavevector k = kius − ki.

to compute and interpret. A specific CLS device with two independent channels has
been built for this experiment and set in a simple gas turbulent flow. It has been used
to study time crosscorrelation between different lengthscales within the inertial range
in this gas turbulence. The optical sensitivity recording depth was increased to reach
a large signal to noise ratio so as not only to observe a significant crosscorrelation
but also to investigate at which level a time asymmetry or causality may or not exist
between different lengthscales of the inertial range.

The aspects of the CLS technique relevant to this investigation will be presented
in the next section, emphasizing the real and imaginary components of the signal, its
modulus and the phase Doppler shift contribution. The third section describes the
experimental assembly: the CLS device that can observe two different simultaneous
scattered signals and the air jet turbulent device. The last section is devoted to the
experimental results and shows the time crosscorrelation obtained between signal
moduli at different scales. The dependence on the main experimental parameters is
analysed and their reduction to a unique parameter is shown. The time crosscorrelation
behaviour is discussed.

2. Collective light scattering and scale information
The basic CLS setup (Grésillon et al. 1982) is sketched in figure 1. A plane

electromagnetic wave, e.g. from a laser source, lights a transparent medium. Spatial
modulation of the dielectric constant produces a partial diffraction that can be
detected as secondary waves, propagating in oblique directions such as along us.

2.1. Physical principle

The observation principle is based on elastic light scattering (see Jackson 1975). The
first fluid laser scattering observations were obtained by Cummins, Knable & Yeh
(1964) and Yeh & Cummins (1964) for a colloidal suspension. Their method was
extended to more common fluids, like water or air flows by de Gennes (1966), Frisch
(1967) and Benedek (1964). J.-C. Lelièvre (Lelièvre & Picard 1980) obtained the first
observations of a turbulent air jet.

Unlike laser velocimetry which uses scattering from small particles, CLS uses the
gas molecules themselves as scatterers. The scattered E-field amplitude is shown to be
proportional to the spatial Fourier transform of the gas atomic number density along
the scattering wavevector (Cummins & Swinney 1970). Since the selected wavelength
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scale is much larger than the mean free path, the phase shift due to molecular motion
can be neglected: molecules are seen as frozen in the fluid. Changes in the scattered
E-field phase are due to the macroscopic motion.

Molecular scattering

The E-field amplitude and phase can be characterized as follows. An incident
monochromatic electromagnetic field of pulsation ωi, wavevector ki, and amplitude
E io propagates through the gas:

E i(r, t) = E ioe
i(ki·r−ωit). (2.1)

Each lit molecule (position: rj) reacts as an induced electric dipole of amplitude
proportional to the incident electric field. The molecule polarizability is αj , and the
induced electric dipole moment is

pj(t) = εoαjE i(rj , t). (2.2)

This dipole radiates a spherical electric field. This scattered electric field is detected
far enough from the observation volume for the far-field approximation to be valid.
The scattered electric field near to the detector can be approximated as a plane
monochromatic wave. Since the scattering is elastic, the wavenumber is the same as
the incident one. Its direction us is determined by the detector position:

ks = kius. (2.3)

When the dipole radiated field is expressed in term of the incident field from
equations (2.1) and (2.2), the scattered electric field is obtained as

E sj(r
′, t) =

παj

N2λ2
i

eiksr
′

r′
us ∧ [us ∧ E io]e

−iωitei(ki−ks)·rj (2.4)

where N is the medium optical mean index and λi the vacuum wavelength. The
last factor is the spatial phase factor. Its modulation is defined by the ‘scattering’
wavevector k:

k = ks − ki. (2.5)

This scattering wavevector is shown in figure 1.

Scattering from non-uniform fluid

The total electric field that is received by the detector is a sum of scattered fields
from each molecule inside the observation volume V . The volume V is defined as
the intersection between the incident laser beam and the detector antenna beam
(Holzhauer & Massig 1978):

E s(r
′, t) =

π

N2λ2
i

eiksr
′

r′
e−iωit

∑
j

αjus ∧ [us ∧ E io]e
−ik·rj . (2.6)

CLS applies to cases where the scattering wavelength is very large compared to
the mean free path and the detector response time is long compared to the molecule
collision time. In the following experiments, the analysed wavelength will be of the
order of 1 mm and the detecting system response time of the order of 10 ns. In these
conditions, the discrete sum over molecular positions can be replaced by a number
density integration on volume V . When the gas is a uniform mixture of different
molecular species, the molecule polarization αj can be replaced by the gas mean
polarizability α.
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Figure 2. Heterodyne detection: a frequency shifted reference beam is created from the original
laser beam by an acousto-optic modulator and sent to the detector. The interference term between
the reference and the scattered beam is frequency shifted like the reference beam, and retains the
phase and modulus information of the scattered beam. The beams crossing volume defines the
observation zone.

The scattered electric field is then

E s(r
′, t) =

πα

N2λ2
i

eiksr
′

r′
e−iωitus ∧ [us ∧ E io]

∫
V

n(r, t)e−ik·r d3r. (2.7)

In this equation, E s is in the form of the product of the elementary scattered field
from a single molecule located at the origin and the molecular density spatial Fourier
transform along the scattering wavevector k.

Rayleigh scattering uses the same molecular process, but it is performed in the
‘non-coherent’ regime, at very large wavevectors where the molecular mean free
path smooths out the gas number density space distribution. CLS, however, is a
‘coherent’ Rayleigh scattering which only occurs when the number density is spatially
non-uniform.

Turbulent gas flows, unlike quiescent gas flows, provide strong CLS signals. This
will be commented upon later.

2.2. Heterodyne detection

Detectors responses are usually proportional to the received electromagnetic power.
Plain detection of the scattered power would result in obtaining only the square of the
complex field information (number density Fourier transform). In order to retain both
the phase and modulus information of the Fourier transform, heterodyne detection is
used. The optical layout is shown in figure 2.

Local oscillator

A reference beam (or ‘local oscillator’ beam) is created by an acousto-optic mod-
ulator, which shifts the laser light frequency by an harmonic HF frequency fr (see
figure 2). This reference beam is sent to the detector so as to interfere with the scat-
tered light. The photo-electric current from the detector is then filtered to preserve
only the interference term between the reference and the scattered electric field on
the detector, at and around the HF frequency fr . This interference signal is propor-
tional to the scattered electric field amplitude (equation (2.7)) which modulates the
monochromatic wave at the reference frequency fr . Two further quadrature analog
demodulation channels recover the complex amplitude of the scattered field.
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Figure 3. Typical CLS signal time evolution in the complex plane (real and imaginary parts are
respectively horizontal and vertical axes). This signal is obtained from a supersonic mixing layer
experiment. The scattering wavevector is along the flow. Axes units are arbitrary, but equal in both
directions.

CLS signal

The two signals obtained from the two demodulation channels of the electronic
device are respectively proportional to the real and imaginary parts of the number-
density-space Fourier transform:

Fok(t) =

∫
V

n(r, t)eik·r d3r. (2.8)

These signals are digitized in a time sequence and recorded for further computer
treatment.

Signal modulus and phase

Figure 3 shows a typical CLS signal time evolution in the complex plane: horizontal
and vertical axes are respectively the real and imaginary parts of the signal. Let us
define the signal phase φ(t) and modulus ρ(t) from

Fok(t) =

∫
V

n(r, t)eik·r d3r = ρ(t)eiφ(t). (2.9)

In figure 3, φ(t) and ρ(t) are seen to have different roles and time behaviours. These
will be explored in the next two sections.

3. Signal phase and velocimetry
Due to the Doppler effect the signal phase and frequency are linked to the flow

velocity. This is further analysed and verified in a supersonic mixing layer experiment.

3.1. CLS signal spectrum and velocimetry

A direct connection between the CLS signal spectrum and the velocity probability
distribution was first obtained by Grésillon & Cabrit (1991) and Grésillon et al.
(1992).
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CLS signal correlation

This connection is best analysed through the signal time correlation CF (τ), which
is defined as

CF (τ) = 〈Fo∗k (t)Fok(t+ τ)〉. (3.1)

Fok(t) is written as a density volume integral (equation (2.8)):

CF (τ) =

〈∫
V

n(r, t)eik·r d3r

∫
V

n(r′, t+ τ)e−ik·r′ d3r′
〉
. (3.2)

Fluid motion

The density volume integral at time t+ τ can be replaced by a volume integral at
time t. This is done by following the motion and distortion of each volume element
d3r in r at time t during time τ: d3r′ in r′ at time t+ τ. This displacement is written as

∆(r, t, τ) = r(t+ τ)− r(t). (3.3)

According to particle conservation

n(r′, t+ τ) d3r′ = n(r, t) d3r. (3.4)

The Fourier transform at time t+ τ can be written as∫
V

n(r′, t+ τ)e−ik·r′ d3r′ =

∫
V

n(r′′, t)e−ik·r′′e−ik·∆r′′ ,t,t+τ d3r′′, (3.5)

where ∆r′′ ,t,t+τ is the flow displacement over time τ, of a fluid element located at r′′ at
time t.

This equation is correct provided the integration volume which follows the fluid
displacement has not significantly changed during a time τCF characteristic of the
molecular density correlation time. In this case, the correlation function can then be
written as

CF (τ) =

〈∫
V

n(r, t)eik·r d3r

∫
V

n(r′′, t)e−ik·r′′e−ik·∆r′′ ,t,t+τ d3r′′
〉
. (3.6)

For times shorter than signal correlation time τCF , displacement is mostly due to
the local volume mean velocity, v̄o:

∆r′′ ,t,t+τ = v̄oτ. (3.7)

The signal correlation at short time is then only a function of density and mean
velocity:

CF (τ) =

〈 ∣∣∣∣∫
V

n(r, t)eik·r d3r

∣∣∣∣2 e−ik·v̄oτ
〉
. (3.8)

Independence hypothesis

This analysis can be taken a step further since in most cases the square of the
signal modulus | ∫

V
n(r, t)eik·r d3r|2 is not correlated with the phase term, e−ik·v̄oτ.

This independence of velocity from density is the opposite of the strong Reynolds
analogy (SRA), which links density and velocity fluctuations fields. But SRA is not
appropriate, since in (3.8) density and velocity are taken at different scales and
nonlinearly combined (density appears through a spatial Fourier transformation, and
velocity as a spatial mean value inside a phase term).

We checked a posteriori that our data verified this assumption, by studying the
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correlation: the correlation coefficient between CLS signal phase and modulus was
found to be smaller than 10% in all cases.

Thus the signal correlation may be written as

CF (τ) =

〈 ∣∣∣∣∫
V

n(r, t)eik·r d3r

∣∣∣∣2〉〈e−ik·v̄oτ〉 . (3.9)

The first factor does not depend upon τ. This can be written as the flow form factor
S(k):

S(k) =
1

noV

〈 ∣∣∣∣∫
V

n(r, t)eik·r d3r

∣∣∣∣2〉. (3.10)

The correlation time behaviour depends only on the second factor:

CF (τ) = noVS(k) 〈e−ik·v̄oτ〉. (3.11)

Velocity distribution

The phase distribution is a statistical characteristic function. It can be written as

〈e−ik·v̄oτ〉 =

∫
d3v̄oe

−ik·v̄oτPv̄o(v̄o), (3.12)

where Pv̄o is the volume mean velocity probability distribution.
From this expression, the CLS signal spectrum, SF (ω), calculated as the correlation-

time Fourier transform is

SF (ω) =

∫
CF (τ)eiωτ dτ = πnoVS(k)

∫
d3v̄oδ(ω + v̄o · k)Pv̄o(v̄o). (3.13)

The signal frequency spectrum is seen as a projection of the velocity distribution
along the scattering wavevector, k:

SF (ω) ∝ Pv̄o‖(v = −ω/k) (3.14)

where Pv̄o‖ is the one-dimensional velocity-probability-distribution, velocity component
along the scattering wavevector axis:

Pv̄o‖(v̄o‖) =

∫
d2v⊥Pv̄o

(
v̄o‖
k

k
+ v⊥

)
(3.15)

and the signal frequency spectrum has the same form as the parallel velocity v̄o‖
distribution.

3.2. Hydrodynamics modes

The above analysis is restricted to cases where small-scale density fluctuations are
convected at the mean flow velocity. This is a special case of fluctuations. It is
interesting to relate it to a more general theory of fluid fluctuations.

It is known from a linear analysis of the inviscid fluid dynamics that three differ-
ent orthogonal fluctuation modes can be simultaneously and independently excited.
They are respectively the entropy, acoustic and vorticity modes (Chu & Kovásznay
1957). The entropy mode is a constant-pressure mode with associated density and
temperature fluctuations convected by the flow: this is the mode that was assumed
in the previous section. The acoustic waves also generate density fluctuations that
are likely to be detected by CLS. At given scattering wavevector, the acoustic wave
will be observed at a different frequency from that of the entropy mode since their
propagation velocity is very different. The vorticity mode is only composed of velocity
fluctuations with no associated density fluctuations. CLS cannot detect it directly.
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Figure 4. CLS signal spectrum (solid line) compared to laser Doppler velocimetry histograms, for
two different positions inside a supersonic mixing layer: (a) corresponds to the centre of the mixing
layer; (b) corresponds to a position which is closer to the faster flow. This figure is taken from
Bonnet et al. (1995).

These properties are observed on experimental CLS spectra. This is shown in
figure 4(b). There a typical CLS signal spectrum is shown as made up of three
different peaks (excluding the instrumental nil velocity peak): the main peak, in the
middle, corresponds to the entropy mode; it is centred on the characteristic Doppler
convection frequency, equal to the mean flow velocity divided by the scattering
wavelength: f = 〈v̄o‖〉/λ. On each side of this entropy peak, two other peaks are
symmetrically situated. Their centre frequencies differ from the main peak frequency
by the sound velocity, C , divided by the scattering wavelength: f = (〈v̄o‖〉 ± C)/λ.
These two peaks correspond to sound waves propagating in the fluid reference frame
downwards and forwards, respectively.

3.3. CLS spectrum and laser Doppler velocimetry

The CLS signal frequency spectrum is made up of Doppler frequencies of the
convected density inhomogeneities. It contains the same information as laser Doppler
velocimetry (LDV). The noticeable difference is the nature of the scattering elements,
but the way the Doppler effect links particle velocity to spectrum frequency is the
same.

A comparison between CLS spectra and LDV has been made by Bonnet et al.
(1995). The experiment was done in a wind tunnel where two atmospheric flows of
different parallel velocities merged into a sheared-flow supersonic mixing layer. The
CLS optics was aimed at different regions in the mixing layer situated at different
positions in the transition region between the slower and the faster part of the flow. At
each position, both the CLS signal spectrum and the LDV histogram were recorded.
Figure 4(a, b) shows these two records obtained at two different positions inside the
mixing layer. For comparison, the CLS spectrum horizontal frequency units have
been converted into their Doppler velocity equivalents. Although the mean velocity
is very different at these two positions, the agreement between the CLS spectrum and
LDV histogram is good and conclusive evidence of the CLS spectrum accuracy.

3.4. Signal phase and modulus: their relation to spectral analysis

The complex signal phase and modulus have a different physical meaning and play a
different role in the spectral analysis. The CLS complex signal Fk(t) can be split into
its modulus ρ(t) and its exponential phase factor eiφ(t).
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Figure 5. Phase exponential (solid line) and modulus (dashed line) spectra. Experiments are done
in the centre of the mixing layer.
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Figure 6. Phase exponential spectrum (dashed line), compared to the whole signal spectrum (solid
line). Experiments are done in the centre of the mixing layer. Curves are normalized to their integral.

Figure 5 shows simultaneous frequency spectra of the modulus and of the phase
factor, obtained in the supersonic mixing layer. We notice that the modulus spectrum
is almost a delta function at null frequency. This is also seen when the mean-square
modulus power 〈ρ2〉 is compared to the squared mean modulus 〈ρ〉2: we find that

〈ρ〉2 ∼ 0.75〈ρ2〉. (3.16)

This implies that the modulus can be supposed as roughly constant for the spectrum
analysis:

Spectrum(ρeiφ) ∼ 〈ρ〉2Spectrum(eiφ). (3.17)

This behaviour is confirmed in figure 6, which shows the signal frequency spectrum
and the exponential factor frequency spectrum. Good agreement is obtained between
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them. This is why the CLS signal phase can be assumed to contain mainly volume
mean velocity information. Apart from the Doppler phase proportionality to the
wavevector k, this velocity information is the same whatever the observation scale k.
Instead, the signal modulus carries information that is typical of a given scale. This
is why the signal modulus will be explored from now on.

4. Form factor and the turbulent field structure at different spatial scales
Information about the scale of the scattering wavelength is obtained via the CLS

signal modulus. This part of the signal can be used to probe the turbulence spatial
spectrum since it provides direct information at a given scale. By optically tuning the
wavenumber to different values, it is easy to sweep, in wavenumber space, the form
factor (i.e. the signal modulus mean square) 〈|Fok(t)|2〉.

As mentioned in Pao (1965a, b), density can be considered as a passive scalar field
for the turbulence transport processes when turbulence is incompressible. For such a
scalar field, Pao showed that the scaling law is the same as that of the kinetic energy.
Thus we might expect a self-similar behaviour as seen from classical hot probes,
except that our observation is in the wavevector three-dimensional space instead of
the scalar frequency one-dimensional space. This is why the expected scale exponent
is |k|−11/3 instead of |k|−5/3 since this latter is obtained from the former by a spherical
integration over fluctuations of the same wavenumber spectrum,

〈|Fok(t)|2〉 = 〈|n(k, t)|2〉 ∝ k−11/3. (4.1)

A good choice of normalization for this quantity is that of the form factor,

S(k) = 〈|n(k, t)|2〉/〈n〉V . (4.2)

For a perfect gas at stationary thermodynamic equilibrium, the form factor is equal
to unity whatever the value of k. The CLS signal modulus mean-square absolute value
for a given experiment can be obtained from proper signal calibration (Grésillon et
al. 1982).

5. Air jet turbulence observed at two different scales
The inertial subrange is phenomenologically explained as resulting from a coupling,

or a cascade, between different scales (Frisch 1995). Since CLS provides direct infor-
mation at a given scale, it is interesting to observe simultaneously two CLS channels
at a different scale and try to find their relation, if any.

5.1. Biscattering device

The initial CLS device is adapted to observe two independent scattering channels.
This is shown in figure 7. The laser light is divided into three different beams by
two acousto-optic modulators. Two of these beams, P1 and P2, are primary beams
of equivalent power of about 1 W. The third one is the reference (LO) beam at a low
power of a few mW. The light frequency is different for each of them.

The detector receives the reference electric field and the two scattered fields. The
two beating terms, LO× P1 and LO× P2 are proportional to Fok1

(t) and Fok2
(t), with

a different frequency shift (85 MHz and 40 MHz respectively). They are sorted using
filters and recorded separately. Each of these signals is demodulated with a quadrature
mixer and their real and imaginary parts are simultaneously digitized as in § 2.2.

Signals from each scattering are independent as long as the difference between
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Figure 7. Double scattering observation device: Two incident beams (P1, P2) and one local
oscillator (LO) are created from the laser beam, by acousto-optic modulators (AOM). The frequency
differences allow to separate the two scattered signals in the detector current.

the scattering wavevectors, k1 − k2, is larger than the device wavenumber resolution
∆k. Otherwise, a certain crosscorrelation is found between the signals. This crosscor-
relation is proportional to the k volume overlap. For this device, the wavenumber
resolution ∆k is equal to 0.25 mm−1.

Technical parameters

The laser source is a CO2 laser (wavelength: 10.6 µm). The scattering angle value
is between θ = 8 mrad and θ = 40 mrad for both scattering channels. The resulting
scattering wavelength is between 0.26 mm and 1.32 mm. The observation volume is a
long cylinder of the same diameter as the incident beam diameter (12 mm), and a few
decimetres long depending on the scattering angle.

The scattering signal is coming from that part of the volume where turbulence
intensity is large enough. Since the turbulent field spatial extent is of the order of
1 cm long, it is much smaller than the length of the observed region and the turbulence
region actually observed is a cylinder of 12 mm diameter and a few centimetres long,
whatever scattering angle and collective scattering channels are used.

The signal modulation frequencies are 40 MHz and 85 MHz. The typical CLS signal
frequency spectrum is contained in a frequency bandwidth of about 1 MHz. This is
well within the detector bandwidth, which is larger than 100 MHz.

5.2. Axisymmetric air jet turbulence

The experiment was set-up to observe the air density fluctuations in an axisymmetric
air jet (see figure 8). Clean compressed air is blown through a quieting honeycomb
into a settling chamber, and then into the free atmosphere through a hole at the tip of
a hollow drilled cone. The hole diameter is 1.5 mm. The generator pressure increment
is between 0.5 and 1.5 ×105 Pa. This pressure is low enough to ensure a subsonic jet.

The observation volume is situated between 5 and 10 cm downstream of the jet
nozzle. At these distances, the mean velocity on the axis is between 30 and 70 m s−1 and
the turbulence is fully developed. For all the following experiments, the wavevectors
are parallel to the streamwise direction.

For all these flows, the Reynolds number based on the nozzle diameter and the exit
velocity, is more than 1.5×104. The exit velocity (around 300 m s−1) is estimated from
the measured velocity at the downstream observation zone, and the phenomenological
law of mean velocity variation along the symmetry axis. For an axisymmetric jet, the
Reynolds number remains the same all along the axis (Hinze 1975).
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Figure 8. Axisymmetric air jet: the observation volume is a cylinder with a circular cross-section,
crossing the jet axis a few centimetres from the nozzle. Both scattering wavevectors k are oriented
in the streamwise direction.

6. Observation of turbulent field scale dynamics and coupling
The new information on the turbulent field provided by CLS will be divided into

static and dynamic. Static data that is related to the well-known velocity field data
is the form factor variation with spatial scale. The dynamical information from the
CLS signal is the signal modulus (or the root form factor) time behaviour at given
scale, and its correlation between different scales.

6.1. Modulus mean values

Form factor

The form factor variation with wavevector, proportional to the signal modulus mean
square (cf. § 4) can be obtained from CLS observations at different wavenumbers in
the jet turbulence field.

This is shown in figure 9, where the form factor is plotted as a function of
wavenumber on log-log scales. To each factor is associated its error bar. One finds
that the observed form factor is between 2 × 107 and 3 × 109. These values are very
much larger than the thermodynamic value, which is unity. It decreases rapidly with
k. A straight line can be plotted between these experimental values. The slope of this
best linear fit is −3.5, close to the expected k−11/3 Kolmogorov (three-dimensional)
scaling law.

As a consequence of this fast decay, CLS signal analysis will benefit from a large
signal to noise ratio at small wavenumber, and this signal to noise ratio will decay at
larger ks.

Signal modulus variance

We observed that the CLS signal has the same statistical distribution of amplitude
at different wavenumbers. More specifically the ratio between the variance and the
mean square of the modulus does not depend on k.

Consequently, as a function of k, the mean modulus squared behaves in the same
way as the modulus mean square (the form factor). The variance contains no specific
information.

6.2. Crosscorrelation function

The previous results show that the Kolmogorov energy cascade scaling law also
applies to the density fluctuations. In turn, the density fluctuation field could be used
to probe more detailed cascade predictions.
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Figure 9. Form factor vs. wavenumber for developed jet turbulence. The generator pressure
increment is 1.5× 105 Pa. The observation zone is 50 mm downstream from the nozzle.

An interesting feature of CLS is that it gives temporal information for well defined
wavenumbers. Using this information, it is interesting to check whether the cascade
phenomenon leaves any signature on the temporal properties of CLS signal. Such an
observation could also answer the question posed e.g. by Hinze (1975), “It would be
interesting to establish experimentally whether in an actual turbulence the interaction
between eddies is a local process in wavenumber space”. For this purpose, we chose to
correlate the CLS signal modulus at two different wavevectors k, for different times.

The signal modulus time crosscorrelation that we investigated is

C12(τ) = 〈|ρ̃k1(t)||ρ̃k2(t+ τ)|〉 (6.1)

where ρ̃ are is normalized CLS signal modulus fluctuations, defined as

ρ̃k(t) =
ρk(t)− 〈ρk(t)〉

〈|ρk(t)− 〈ρk(t)〉|2〉1/2 . (6.2)

6.3. Typical crosscorrelation

A typical CLS signal modulus time crosscorrelation function is shown in figure 10.
This time correlation is obtained from two CLS signal channels observing air jet
turbulence, on the axis of a 1.5 mm diameter round jet at a 0.5 bar source pressure, at
a distance of 50 mm downstream. The two scattering wavevectors k1 and k2 are parallel
to the mean flow and the analysing wavelengths are 0.33 and 0.66 mm respectively.
Both signals were digitized simultaneously at a rate of 10 MHz, and a sample of
106 values were taken, this sequence being reproduced fifty times. In this way the
statistical deviation of the normalized correlation was reduced to less than 10−3.
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Figure 10. Typical CLS signal modulus crosscorrelation. The generator pressure increment is 0.5
bar. The observation zone is 50 mm downstream from the nozzle. Two CLS signals at scattering
wavelengths 0.33 and 0.66 mm are crosscorrelated. This result was obtained from 50× 106 samples
recorded at a rate of 1 µs. The main part of the curve has a maximum crosscorrelation of 4.2 % near
zero delay, and decays symmetrically in a time of the order of 70µs (half-width at half-maximum).

Crosscorrelation level

A significant crosscorrelation between the two signals at different scales is observed.
The correlation level is much larger than the statistical deviation: it is about 5% and
in all experimental cases it is between 3% and 7%. The correlation rate is a little
smaller when short lengthscales are observed, due to a smaller signal to noise ratio in
each CLS channel.

Delay between scales

A remarkable feature of the time crosscorrelation function shown in figure 10 is
that it is almost symmetrical. There are no signs of time asymmetry, no evidence that
fluctuations at, say, the larger scale are leading fluctuations at the smaller scale. A
significant coupling exists but there is no evidence that this coupling is time oriented.
A slight negative time shift can however be observed in this figure, but it cannot be
taken as significant since it may result from a spatial shift between the two observed
CLS volumes. Indeed, the spatial position precision is estimated to be of the order
of a millimetre; at a mean velocity of 50 m s−1 this is the distance travelled in 20 µs,
which is of the order of the observed time shift.

The small additional correlation occurring over short times near to the time origin
cannot be traced to a gas flow feature, since we found it to be a parasitic remanent of
a cross-talk between channels. Both signals are coming from the same detector and
pre-amplifier; although their heterodyne frequencies are very different, the slightest
modulation in detector sensitivity or pre-amplifier gain results in a correlated signal
at the same time. Small negative values at long times (above 120 µs) are remnants
from a high-pass signal filtering at 2 kHz frequency.

The CLS channel wavevectors were changed in their specified range, and time
crosscorrelation functions were formed for each pair. The same remarks always
apply: the correlation function shows no significant time asymmetry. This is not the
clear time delay one could have expected from a causal cascade from large scales to
small scales. Information seems to circulate back and forth between scales.
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λ1 (mm) λ2 (mm) v̄o (m s−1) L (mm) τc (µs)

0.84 1.06 50 10 34
0.66 38
0.53 41
0.42 38
0.33 36

0.66 1.32 70 10 27
0.47 0.94 27
0.33 0.66 28

Table 1. Cross-correlation and scattering wavelength: values of measured cross-correlation
timescale for each observed pair of wavelengths.

6.4. Characteristic times and turbulence parameters

In order to identify the characteristics of this crosscorrelation, the variation of the
correlation with the main flow and scattering parameters have been investigated.
Since the crosscorrelation function is a simple symmetric function with a maximum
at the time origin, its experimental characteristic is the peak width τc. The correlation
function is observed to be similar to a Gaussian. We determine the best Gaussian
fit for the large-amplitude part where the correlation is larger than 20% of the
maximum. The characteristic time τc is defined as the standard deviation of the fitted
Gaussian distribution.

The four experimental free parameters are the generator pressure, the distance
between nozzle and observation volume and both the scattering angles. These define
the mean axial velocity, v̄o, the turbulent production lengthscale, L, and the scattering
wavelengths, λ1 and λ2.

The mean velocity v̄o is determined from the CLS signal spectrum, using its Doppler
properties. It is obtained as the product of the mean frequency of the main spectrum
peak times the scattering wavelength. The production lengthscale L is defined as the
jet size at the observation zone. Because of the similarity properties of the jet, this
scale is proportional to the distance from the nozzle (to within a few nozzle diameters)
(Hinze 1975). We chose to define L as L = z/5 where z is the distance from the
nozzle. Within this radial distance from the jet axis, the mean velocity at any position
is at least 40% of the mean velocity on the axis.

Scattering wavelength

Two sets of experiments were done to study variation with the scattering length-
scales. The results are shown in figure 11. The parameters values are given in table 1.
In the first series, shown in figure 11(a), one wavevector is kept constant and the other
one is changed. Except for the longer wavelength case, the observed crosscorrelation
function is maximum at the time origin with approximately constant peak width. The
curve corresponding to the smallest wavelength difference shows a sharp peak of cor-
relation at short timescale. This is because the difference between the two wavevectors
is smaller than the device wavevector resolution (found to be equal to 0.25 mm−1).
Thus a part of both signals is common and results in a short time autocorrelation (cf.
§ 7). In the second series, shown in figure 11(b), the wavelength ratio is kept constant
while both wavevectors are changed.

Comparing the two figures, the calculated characteristic times is seen to depend
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Figure 11. Crosscorrelation for different scattering scales: (a) experiments where one wavevector
is kept constant while the other one is changed. The mean flow velocity is 50 m s−1. The scattering
wavelengths for each curve are: 0.84, 1.06 mm (solid); 0.66, 1.06 mm (dashed); 0.53, 1.06 mm
(dash-dot line) and 0.42, 1.06 mm (dotted). (b) Experiments where the scattering scale ratio remains
constant ( 1

2
) while both scales are changed. The scattering wavelengths are: 0.66, 1.32 mm (solid line);

0.47, 0.94 mm (dashed line) and 0.33, 0.66 mm (dash-dotted line). The characteristic crosscorrelation
time width can be seen to be nearly constant in every case.

on the mean velocity (decreasing for large v̄o), while it does not significantly depend
upon the scattering lengthscale.

Mean axial velocity

The effect of the mean axial velocity was investigated by changing the jet generator
pressure. The corresponding experimental parameters are given in table 2. The time
crosscorrelation plots are shown in figure 12. As the velocity increases, the maximum
correlation value does not change but the characteristic width is seen to decrease.

The crosscorrelation timescales are measured from figure 12. They are plotted on
figure 13 as a function of velocity, in a log-log plot. The correlation time is seen to
decrease when the velocity increases, almost linearly in this log-log plot. This suggests
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Figure 12. Crosscorrelation for different generator pressures. The mean velocity is changed by
changing the generator pressure: 32 m s−1 (solid line), 37 m s−1 (dashed line), 43 m s−1 (dash-dot line)
and 48 m s−1 (dotted line).

λ1 (mm) λ2 (mm) v̄o (m s−1) L (mm) τc (µs)

0.66 1.32 32 10 47
37 42
43 39
48 36
51 33

Table 2. Crosscorrelation and mean axial velocity: values of measured crosscorrelation
timescale for each mean axial velocity.

a power scale exponent can be found to relate the characteristic time variation with
the velocity as

τc ∝ v̄−0.8±0.3
o . (6.3)

This is very close to an inverse variation.

Turbulence production lengthscale

In a round free jet, the production lengthscale is known to be proportional to
the distance between the observation volume and the jet nozzle. Changing this
distance modifies not only the jet width in the observation volume, but also the mean
velocity. The corresponding experimental parameters are given in table 3. The time
crosscorrelation plots are shown in figure 14. The correlation time is seen to increase
as the production length increases. The characteristic time width can be measured
from this figure, and plotted as a function of the production scale. This is shown in
figure 15, in log-log scale.

An approximate variation of τc as the square of L is observed. However these
variations with L also include simultaneous variations of the velocity. These can
be taken into account by using (6.3). When this is done, a parameter scaling law
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Figure 13. Cross-correlation timescale vs. mean axial velocity. The scales are logarithmic.
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Figure 14. Crosscorrelation for different observation positions. The observed volume position along
the jet axis is changed, accordingly changing the production length. The corresponding production
lengthscales are: 10 mm (solid line), 14 mm (dashed line) and 20 mm (dash-dotted line). From one
curve to the other, the mean velocity changes as it is inversely proportional to the production
lengthscale.

including both velocity and production lengthscale can be obtained as

τc ∝ L1.0±0.3v̄−0.8±0.3
o . (6.4)

Large structures

The above result is compatible with a simple dimensional analysis by which the
characteristic correlation time is

τc ∝ L

v̄o
. (6.5)

Thus the crosscorrelation time seems to correspond to the production time, i.e. to
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λ1 (mm) λ2 (mm) v̄o (m s−1) L (mm) τc (µs)

0.66 1.32 70 10 27
0.47 0.94 27
0.33 0.66 28

0.66 1.32 50 14 50
0.47 0.94 51
0.33 0.66 53

0.66 1.32 35 20 98
0.47 0.94 96
0.33 0.66 94

Table 3. Crosscorrelation and production lengthscale: values of measured crosscorrelation
timescale for each production lengthscale.

25
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100
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15 2520
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Figure 15. Crosscorrelation timescale vs. production lengthscale. The scales are logarithmic.

the characteristic lifetime of the largest turbulence structures that are convected at
the mean velocity.

It should also be observed that the crosscorrelation level is the same whatever
the different lengthscales. This implies that these turbulence structures drive simul-
taneously all the observed lengthscales. The turbulence intensity at large scale is
simultaneously correlated with small-scale turbulence intensity.

Correlation and dust

Before concluding about characteristics that are intrinsic to turbulence, one should
examine whether the observed crosscorrelation time could be due to dust particles
blown through the observation scattering volume. Such particles would be simultane-
ously observed at any scale, giving rise to a significant correlation.

If this was the case, the experimental crosscorrelation time would be the time of
flight of each particle inside the observation zone. This time of flight is of the same
order as the observed correlation time. However it is also inversely proportional to the
mean velocity and does not depend on the production lengthscale. This is not what is
seen for the characteristic crosscorrelation time: it depends clearly on the production
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Figure 16. Typical CLS signal amplitude time autocorrelation. The generator pressure increment
is 1.5× 105 Pa. The position is 50 mm from the nozzle. The scattering wavelength is 0.66 mm. Two
different timescales can clearly be observed: a short one of the order of a few microseconds, and a
much larger timescale over which a small correlation is persistent.

timescale. Moreover the experimental crosscorrelation level does not depend on the
scattering wavelength, while it should have in the presence of dust since the dust part
of the signal should increasingly dominate over the turbulent part as the scattering
wavelength becomes smaller.

We thus conclude that the characteristic time obtained from crosscorrelation be-
tween signals at different scales is not specific to the observed lengthscale, but is equal
to the large turbulence structures lifetime.

7. Vortex turnover time and CLS time autocorrelation
The CLS signal amplitude time autocorrelation can be expected to provide more

scale-specific information. This time autocorrelation function is

C11(τ) = 〈|ρ̃k1(t)||ρ̃k1(t+ τ)|〉 (7.1)

where use has been made of the normalized modulus fluctuations ρ̃k(t) defined in
(6.2).

Typical autocorrelation

A typical signal autocorrelation function is shown in figure 16. As in figure 10, it
was observed by recording the signal as 50 × 106 samples in successive sequences of
106 samples, at a rate of 10 MHz.

Two different timescales can clearly be seen on this figure. The autocorrelation first
decreases from 1 to about 0.05 within a few microseconds. Then it decreases to 0 in a
much longer period of a few tens of microseconds. This second part is very close to
the previously shown crosscorrelation function: for the same (velocity and production
scale) experimental conditions, these correlation levels and timescales are identical.
The same large-lengthscale phenomena are most likely responsible for this behaviour.

The short autocorrelation timescale τs is worth investigating. It will be quantitatively
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Figure 17. Autocorrelation and scattering wavelength: (a) the time autocorrelations. The observation
position is 50 mm from the nozzle. The mean flow velocity is 50 m s−1. The wavelength for each curve
is: 0.84 mm (solid line), 0.67 mm (dashed line), 0.53 mm (dash-dotted line) and 0.42 mm (dotted). (b)
The short timescale vs. the scattering lengthscale. The scales are logarithmic.

defined as the standard deviation of that part of the time correlation function with
amplitude larger than 0.05, treated as a distribution. As previously, we study how
it varies when the main experimental free parameters are modified: jet pressure
increment, observation position from the nozzle and scattering wavelength.

Scattering wavelength

Figure 17 shows autocorrelation functions obtained for different scattering wave-
lengths (a), and the corresponding characteristic times as a function of this scattering
wavelength (b). The observation position is 50 mm from the nozzle. The mean flow
velocity is 50 m s−1. The results for the short timescale τs are reported in table 4. The
autocorrelation time width is seen to increase with wavelength.

A scaling law can be found from these results:

τs ∝ λ+1.15±0.2. (7.2)
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λ (mm) v̄o (m s−1) L (mm) τs (µs)

0.33 50 10 1.3
0.42 1.7
0.53 2.2
0.67 2.8
0.84 3.8

Table 4. Autocorrelation and scattering wavelength: values of measured short timescale for each
scattering wavelength.

P v̄o L τs
λ (mm) (10 5 Pa) (m s−1) (mm) (µs)

0.66 0.5 32 10 4.3
0.7 37 3.4
0.9 43 3.0
1.1 48 2.8
1.3 51 2.5

v̄o L τs
λ (mm) (m s−1) (mm) (µs)

0.66 70 10 2.0
0.47 1.4
0.33 0.98

0.66 50 14 3.3
0.47 2.2
0.33 1.65

0.66 35 20 5.7
0.47 3.8
0.33 2.7

Table 5. Autocorrelation timescale variation with mean velocity and production lengthscale. These
parameters were modified by changing the observation position or the jet pressure.

Mean velocity and production lengthscale

Table 5 shows the variations of the autocorrelation short timescale when the jet
generator pressure varies from 0.5 to 1.3× 105 Pa and when the observation position
from the jet varies from 50 mm to 100 mm. From these results, the characteristic auto-
correlation timescaling law with mean velocity and production lengthscale (figure 18)
can be obtained as

τs ∝ L0.4±0.3v̄−1.15±0.3
o . (7.3)

Observed structures

From the previous two observations, the characteristic autocorrelation short time-
scaling law τs is

τs ∝ λ+1.15±0.2L+0.4±0.3v̄−1.15±0.3
o . (7.4)

This law can be made similar to the eddy turnover timescaling law, present in the
Kolmogorov theory:

τturnover ∝ λ2/3L1/3v̄−1
o . (7.5)

The observed variations with production scale and mean velocity are close to this
value. However, the experimental variation with the wavelength λ is stronger. Since
the experimental law for τs does not have the right dimension, the τs variations must
depend on another parameter. The eddy turnover phenomenon seems not to be the
only effect; there may be some contribution due to e.g. the finite observation volume.
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Figure 18. Autocorrelation timescale variation with main turbulence parameters: timescale scaling
law with mean velocity (a) and production lengthscale (b).

8. Conclusion
With the help of collective light scattering, experimental investigations of a fully

developed turbulent field have been made with direct observations of the space
Fourier transforms at given spatial scales. The time behaviours of different scales and
their correlation have been obtained. With regard to the cascade phenomenology, it
is found that eddy turnover timescaling law is close to the law for the autocorrelation
characteristic time. Moreover, the crosscorrelation level between any two different
scales is significant. But the experimental crosscorrelation time shows three main
differences with the cascade model: the characteristic time is much longer than eddy
turnover time, it does not depend on the scale size ratio, and it does not show
any significant time asymmetry. Perhaps not surprisingly, the crosscorrelation time is
found to be the turbulence production time. We think these findings can be useful for
building pertinent phenomenological turbulence models.

This work has been supported by grant number 94-112 from ‘Direction des
Recherches et Études Techniques’ of the French ministry of defense.
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